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Introduction

In this thesis it is examined how certain algebraic structures arise in the
study of topological quantum field theory. The notion of a topological quan-
tum field theory (TQFT) was coined by Witten [Wit88] in 1988. The phys-
ically motivated idea is to provide a mathematical framework for studying
quantum field theory which does not depend on the Riemannian metric of
the underlying space-time manifold. In this sense the theory is purely topo-
logical. In his paper Witten already foreshadows the possibility of using
TQFTs to construct meaningful manifold invariants. This was probably the
starting point for mathematicians to become interested in TQFTs as well.
Shortly after, Atiyah [Ati89] proposed a set of axioms which were supposed
to lay a rigorous foundation for a mathematical treatment of TQFTs.

Based on the ideas presented in Atiyah’s paper a n-dimensional TQFT
can be thought of as a rule which assigns finite-dimensional vector spaces to
closed oriented (n−1)-manifolds and linear maps to n-dimensional oriented
cobordisms (up to diffeomorphism preserving the boundary) between two
such (n−1)-manifolds. Using the modern language of category theory we will
speak of a n-dimensional TQFT as a functor from the cobordism category
nCob to the category Vectk of finite-dimensional vector spaces which obeys
certain additional properties.

According to a general rule of quantum mechanics, many-particle sys-
tems are described by the tensor product of the particles’ state spaces. Thus
it is natural to demand from a TQFT that the functor sends the disjoint
union of (n−1)-manifolds (each one corresponding to a particle) to the ten-
sor product of the assigned vector spaces (corresponding to the respective
state spaces). We will see that a mathematician would describe this situa-
tion by saying that the category nCob is a monoidal category with respect
to disjoint union and so is Vectk with respect to the usual tensor prod-
uct. Moreover, the functor preserves this structure and is therefore called
a monoidal functor. Introducing these notions in detail and providing some
important examples is actually the aim of the first section. In conclusion a
n-dimensional TQFT is a monoidal functor nCob → Vectk.

Quinn [Qui95] has been one of the first people to realize the mathematical
potential of describing TQFTs in terms of category theory. He also suggests
to replace the cobordism category by some other category which might be
of combinatorial or algebraic flavor. We will adopt this viewpoint and thus
define a general TQFT as a monoidal functor C →Vectk where the monoidal
category C can be specified at our own discretion.

In this thesis we are interested in two particular choices of monoidal
categories C. For the largest part we will be concerned with the classical
Atiyah-type TQFTs nCob → Vectk described above. In order to under-
stand these functors we will spend an entire section on oriented cobordisms
and construct the category nCob. The connection to algebra arises in the
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special case n = 2. This is basically due to the fact that the category 2Cob
can be described explicitly by a set of generators and relations. In turn this
is only possible because a complete classification of 2-manifolds/surfaces
exists. Eventually the ultimate goal will be to use this result to describe
2d-TQFTs only in terms of algebra.

The main result in this context states that there is a bijection between
(symmetric) monoidal functors 2Cob → Vectk and commutative Frobe-
nius algebras. In other words given a 2d-TQFT there is a corresponding
Frobenius algebra and vice versa. To prepare ourselves for the proof, this
algebraic structure is studied extensively in Section 3. Frobenius algebras
can be characterized as algebras that come with a certain linear form or
equivalently with an associative, non-degenerate pairing. The aim is to see
that these algebras can be equipped with a special structure of a coalgebra.
This turns out to be the crucial property of Frobenius algebras regarding
their connection with 2d-TQFTs. The construction of the comultiplication
will be done using a graphical calculus following Kock [Koc04]. In fact, the
excellent (but lengthy) book by Kock will be the main source for our discus-
sion of classical TQFTs. After all these general considerations some explicit
examples are studied in 4.2. In particular the way in which TQFTs produce
manifold invariants will be outlined.

At the end of the thesis we present an outlook by replacing the category
of cobordisms by a k-linear abelian monoidal category in the spirit of Quinn.
The functors which are interesting in this context are fiber functors. They
correspond to bialgebras in a way which is very similar to the correspondence
between classical TQFTs and Frobenius algebras. The underlying theory of
this result is the theory of Tannaka reconstruction. This goes a lot further
than what is presented in this thesis and it is an interesting subject in its
own right, see [JS91]. The discussion presented here is based on the lecture
notes of a course on tensor categories given at MIT, cf. [EGNO]. A positive
aspect about these notes is that they are goal-oriented and quickly come to
the significant results without detours. However, the flip side is that most
of the proofs are left out or posed as exercises. This motivated to work
out this text and fill in some details. Hopefully, this thesis presents a short
introduction to the basics of reconstruction of bialgebras which is readable
for people without prior experience in this area.

Acknowledgements: I would like to thank Hanno Becker for providing
me with some useful hints regarding the proof of Theorem 42. Last but not
least, special thanks go to Prof. Dr. Catharina Stroppel for advising this
thesis and suggesting to incorporate the basic ideas of reconstructionism in
addition to classical TQFTs.
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1 Topological quantum field theory and monoidal
categories

We begin by defining abstractly the central object of study. Throughout
this text Vectk denotes the category of finite-dimensional vector spaces over
some fixed field k.

Definition 1. Let C be a monoidal category. A topological quantum field
theory (TQFT) is a monoidal functor F : C → Vectk.

This first section is devoted to explaining the contents of this definition
and to introducing some closely related notions and results from category
theory which will be important throughout this thesis. We will assume
basic knowledge about categories, functors1 and natural transformations as
provided by [ML98]. The definitions given in this section can be found in
any source on monoidal categories, e.g. [EGNO] or [Kas95].

The notion of a monoidal category generalizes the concept of the tensor
product which we are familiar with from the category Vectk (cf. Example
4). Precisely we have the following

Definition 2. A monoidal category2 is a sextuple (C,⊗, a,1, l, r) where C
is a category, ⊗ : C × C → C is a functor called the tensor product, a is a
natural isomorphism

aX,Y,Z : (X ⊗ Y )⊗ Z ∼−→ X ⊗ (Y ⊗ Z) ∀X,Y, Z ∈ C

called the associativity constraint, 1 ∈ C is an object, l and r are natural
isomorphisms

lX : 1⊗X ∼−→ X ∀X ∈ C

rX : X ⊗ 1
∼−→ X ∀X ∈ C

called the unit constraints. This data is subject to the following axioms:

1. (Pentagon Axiom) The diagram

((W ⊗X)⊗ Y )⊗ Z
aW,X,Y ⊗idZ

**

aW⊗X,Y,Z

tt
(W ⊗X)⊗ (Y ⊗ Z)

aW,X,Y⊗Z

��

(W ⊗ (X ⊗ Y ))⊗ Z
aW,X⊗Y,Z

��
W ⊗ (X ⊗ (Y ⊗ Z)) W ⊗ ((X ⊗ Y )⊗ Z)

idW⊗aX,Y,Zoo

is commutative.
1Unless stated otherwise all functors are supposed to be covariant.
2Some authors refer to monoidal categories as tensor categories.
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2. (Triangle Axiom) The diagram

(X ⊗ 1)⊗ Y
aX,1,Y //

rX⊗idY ''

X ⊗ (1⊗ Y )

idX⊗lYww
X ⊗ Y

is commutative.

These are called coherence diagrams.

Remark 3. The name ”monoidal category” originates from the fact that
this structure can be thought of as a categorification of a monoid. Recall
that a monoid is simply a set together with an associative multiplication map
and a neutral element. This concept can be lifted to the level of categories
by replacing the set with a (small) category and elements of the set by
objects. The multiplication map then corresponds to the tensor functor.
Equalities are replaced by isomorphisms and thus the associativity of the
mulitplication translates into the associativity constraint and the properties
of the unit of a monoid simply become the unit constraints.

Example 4. As already mentioned the standard example of a monoidal
category is Vectk. In this case the tensor functor assigns to a pair of k-vector
spaces V,W their usual tensor product V ⊗kW over k and to a pair of maps
ϕ : V →W , ψ : V ′ →W ′ the tensor product map ϕ⊗ψ : V ⊗V ′ →W ⊗W ′
given by x ⊗ y 7→ ϕ(x) ⊗ ψ(y). The associativity constraint is realized
by the canonical isomorphism (V ⊗W ) ⊗ X ∼−→ V ⊗ (W ⊗ X) defined by
(v ⊗ w) ⊗ x 7→ v ⊗ (w ⊗ x). Moreover, the unit object is k, and the unit
constraints k ⊗ V ∼−→ V and V ⊗ k ∼−→ V are given by λ ⊗ v 7→ λ.v and
v ⊗ λ 7→ λ.v respectively. A straightforward calculation shows that these
constraints satisfy the pentagon and triangle axiom.

Example 5. The following example will become important later (see 4.3).
Let H be a finite-dimensional algebra over k. Consider Rep(H), the cat-
egory of finite-dimensional3 representations of H. Objects of this cate-
gory are pairs (V,φ) where V is a finite-dimensional k-vector space and
φ : H → Endk(V ) is a unital algebra homomorphism. Equivalently, ob-
jects of Rep(H) can be thought of as H-modules where the action of H is
given by h.v := φ(h)(v). A morphism (V, φ) → (W,ψ) is a k-linear map
f : V →W such that f(φ(h)(v)) = ψ(h)(f(v)) for all h ∈ H and m ∈ V , or
alternatively, a homomorphism of H-modules. It is easy to check that this
is indeed a category.

3The finiteness condition on both the dimension of the algebra and the representations
can be dropped. But we will be interested in the finite-dimensional case exclusively.
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If H is also a bialgebra with structure maps µ, η, δ, ε (cf. Appendix A)
we can construct a monoidal structure by defining (V, φ)⊗ (W,ψ) to be the
pair consisting of the vector space V ⊗W and the algebra homomorphism

H
δ−→ H ⊗H φ⊗ψ−−−→ Endk(V )⊗ Endk(W )

c−→ Endk(V ⊗W )

where δ denotes the comultiplication of H and the map c is the obvious one.
The tensor product of two morphisms is simply the tensor product of the
two k-linear maps.

We define an associativity constraint

a(V,φ),(W,ψ),(X,σ) : ((V, φ)⊗ (W,ψ))⊗ (X,σ)
∼−→ (V, φ)⊗ ((W,ψ)⊗ (X,σ))

by the canonical isomorphism aV,W,X : (V ⊗W ) ⊗ X ∼−→ V ⊗ (W ⊗ X) of
vector spaces (cf. Example 4). For this to be an isomorphism in Rep(H)
it needs to be checked that aV,W,X is an isomorphism of H-modules. This
is a straightforward calculation using the coassociativity of δ. Instead of
carrying it out explicitly, let us discuss the unit object a bit more detailed.

The unit object is given by (k, ε) where ε : H → k is the counit of H
(since there is a canonical isomorphism k ∼= Endk(k) given by λ 7→ (1 7→ λ·1)
we identify k with Endk(k)). To define a unit constraint (k, ε) ⊗ (V, φ)

∼−→
(V, φ) in Rep(H) we use the isomorphism lV : k ⊗ V → V given by the
action of k on V (cf. Example 4). It remains to check that

lV (c ◦ ε⊗ φ ◦ δ(h)(1⊗ v)) = φ(h)(lV (1⊗ v)).

First we factor
ε⊗ φ ◦ δ = id⊗ φ ◦ ε⊗ id ◦ δ︸ ︷︷ ︸

h7→1⊗h

and use the counit axiom. Thus one gets

ε⊗ φ ◦ δ(h) = 1⊗ φ(h)

where 1 is identified with the identitiy endomorphism of k. Applying c yields

c ◦ ε⊗ φ ◦ δ(h) = idk ⊗ φ(h)

All in all we have

lV (c◦ε⊗φ◦δ(h)(1⊗v)) = lV (idk⊗φ(h)(1⊗v)) = φ(h)(v) = φ(h)(lV (1⊗v)).

Analogously it can be shown that (k, ε) is also a right unit. Moreover,
one can convince oneself that all this data actually satisfies the coherence
diagrams.

Definition 6. A monoidal category is called strict if for all objects X,Y, Z
in C one has equalities (X⊗Y )⊗Z = X⊗ (Y ⊗Z) and 1⊗X = X = X⊗1,
and the associativity and unit constraints are the identity maps.
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Until now all examples under consideration did not have the property of
being strict (the constraint maps were isomorphisms but not identities). In
the following, two examples of strict monoidal categories are discussed.

Example 7. The standard example of a strict monoidal category is the
category of endofunctors of a given category. More precisely, let C be any
category (not necessarily monoidal). Consider the category End(C) of all
functors from C to itself (morphisms in this category are natural transfor-
mations). Then the tensor product in End(C) is simply the composition of
functors. The associativity constraint is given by the identity natural trans-
formation. Moreover, the unit object in End(C) is defined to be the identity
functor and the respective constraints are the identity natural transforma-
tion again. Hence we have a strict monoidal category.

Example 8. Another important example of a strict monoidal category is
the category Braid of braids. Before explaining this category we recall some
basic facts about braids in general; see [KT08, 1.2.1].

A geometric braid on n ≥ 1 strings is a set b ⊂ R2 × [0, 1] formed by
n disjoint topological intervals (a topological space homeomorphic to [0, 1])
called the strings of b such that the projection R2× [0, 1]→ [0, 1] maps each
string homeomorphically onto [0, 1] and

b ∩ (R2 × {0}) = {(1, 0, 0), (2, 0, 0), ..., (n, 0, 0)}

b ∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), ..., (n, 0, 1)}.

It is natural to identify two geometric braids with the same number of
strings if they are isotopic. That means they can continously be deformed
into each other via a homotopy which leaves the endpoints of the strings
fixed during the process of deformation. The equivalence classes produced
via this identification are called braids.

Now we turn to the category Braid whose objects are by definition all
natural numbers N including 0. The set of morphisms between two objects n
and m is the empty set ∅ unless n = m. In the latter case HomBraid(n, n) is
defined to be the set of all braids on n strings. If n = 0 the set HomBraid(0, 0)
consists of the empty braid b = ∅ only.

Composition of morphisms is given by concatenation of braids on n
strings. Precisely, given two n-string braids we choose two representing
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geometric braids b1, b2 and define their product to be the set of points
(x, y, t) ∈ R2×[0, 1] such that (x, y, 2t) ∈ b1 if 0 ≤ t ≤ 1

2 and (x, y, 2t−1) ∈ b2
if 1

2 ≤ t ≤ 1. This yields a new geometric n-string braid and therefore a
braid on n-strings. This composition is well-defined and associative. The
unit morphism is given by the trivial braid

{1, 2, ..., n} × 0× [0, 1] ⊂ R2 × [0, 1].

Finally we introduce a monoidal structure in the category Braid by
defining the tensor product of two objects n,m to be n⊗m := n+m. The
unit object is obviously given by 0. The tensor product of two morphisms
or more precisely of two braids is realized by placing one braid next to the
other.

This concept of paralleling is crucial for this thesis and we will run into
it over and over again (cf. Section 2). Since Braid is a strict monoidal
category we do not have to bother with any of the coherence constraints or
diagrams.

Until now we have consistently ignored certain natural symmetries that
are present in the categories under consideration. In Vectk there is a natural
twist isomorphism τV,W : V ⊗W ∼−→ W ⊗ V given by x ⊗ y 7→ y ⊗ x for
any particular choice of k-vector spaces V,W . These isomorphisms satisfy
certain conditions that are outlined in the following definition.

Definition 9. A symmetric monoidal category consists of a monoidal cate-
gory (C,⊗, a,1, l, r) together with a collection τ of natural isomorphisms

τX,Y : X ⊗ Y ∼−→ Y ⊗X ∀X,Y ∈ C

called a commutativity constraint. This data is subject to the following
axioms:

1. (Hexagon Axiom) The diagrams

X ⊗ (Y ⊗ Z)
τX,Y⊗Z // (Y ⊗ Z)⊗X

aY,Z,X

��
(X ⊗ Y )⊗ Z

aX,Y,Z

OO

τX,Y ⊗idZ
��

Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z
aY,X,Z // Y ⊗ (X ⊗ Z)

idY ⊗τX,Z

OO
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and

(X ⊗ Y )⊗ Z
τX⊗Y,Z // Z ⊗ (X ⊗ Y )

a−1
Z,X,Y
��

X ⊗ (Y ⊗ Z)

a−1
X,Y,Z

OO

idX⊗τY,Z

��

(Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y )
a−1
X,Z,Y // (X ⊗ Z)⊗ Y

τX,Z⊗idY

OO

commute ∀X,Y, Z ∈ C.

2. τY,X ◦ τX,Y = idX⊗Y ∀X,Y ∈ C

If the condition τY,X ◦τX,Y = idX⊗Y in Definition 9 is dropped we obtain
what is called a braided monoidal category. In the category Braid we can
define a twist isomorphism n ⊗m → m ⊗ n as illustrated by the following
picture

It can be verified that these are natural isomorphisms satisfying the
hexagon axioms; see [Kas95, XIII.2]. However, it is geometrically evident
that τm,n ◦ τn,m 6= idn⊗m because applying τm,n after τn,m twists the braid
even further.

After having introduced monoidal categories we pass on to monoidal
functors. The following definition categorifies the notion of a monoid homo-
morphism.

Definition 10. Let (C,⊗, a,1, l, r) and (C′,⊗′, a′,1′, l′, r′) be two monoidal
categories. A monoidal functor from C to C′ is given by a triple (F, J, φ)
where F : C → C′ is a functor, J is a natural isomorphism

JX,Y : F (X)⊗ F (Y )
∼−→ F (X ⊗ Y ) ∀X,Y ∈ C

and φ : 1′
∼−→ F (1) is an isomorphism. This data is subject to the following

conditions:
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1. (Monoidal Structure Axiom) The diagram

(F (X)⊗′ F (Y ))⊗′ F (Z)
a′
F (X),F (Y ),F (Z) //

JX,Y ⊗′idF (Z)

��

F (X)⊗′ (F (Y )⊗′ F (Z))

idF (X)⊗′JY,Z

��
F (X ⊗ Y )⊗′ F (Z)

JX⊗Y,Z

��

F (X)⊗′ F (Y ⊗ Z)

JX,Y⊗Z

��
F ((X ⊗ Y )⊗ Z)

F (aX,Y,Z)
// F (X ⊗ (Y ⊗ Z))

is commutative ∀X,Y, Z ∈ C.

2. The diagrams

1′ ⊗′ F (X)
l′
F (X) //

φ⊗′idF (X)

��

F (X)

F (1)⊗′ F (X)
J1,X // F (1⊗X)

F (lX)

OO
F (X)⊗′ 1′

r′
F (X) //

idF (X)⊗′φ
��

F (X)

F (X)⊗′ F (1)
JX,1 // F (X ⊗ 1)

F (rX)

OO

are commutative ∀X ∈ C.

A monoidal functor is called strict if the isomorphisms JX,Y and φ are iden-
tities.

Definition 11. Let (C,⊗, a,1, l, r) and (C′,⊗′, a′,1′, l′, r′) be monoidal cat-
egories and (F, J, φ), (F̃ , J̃ , φ̃) two monoidal functors from C to C′. A natural
monoidal transformation η : (F, J, φ)→ (F̃ , J̃ , φ̃) is a natural transformation
η : F → F̃ such that the following diagrams commute for all X,Y ∈ C

F (X)⊗′ F (Y )
JX,Y //

ηX⊗′ηY
��

F (X ⊗ Y )

ηX⊗Y

��
F̃ (X)⊗′ F̃ (Y )

J̃X,Y // F̃ (X ⊗ Y )

1′
φ //

φ̃   

F (1)

η1
��

F̃ (1)

A natural monoidal isomorphism is a natural monoidal transformation which
is also a natural isomorphism.

Now that we have introduced all notions necessary to understand the
definition of a TQFT (cf. Definition 1) we close this introductory section by
mentioning MacLane’s strictness theorem.
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Theorem 12. Every monoidal category is monoidally equivalent to a strict
monoidal category. More precisely, given a monoidal category C there exists
a strict monoidal category Cstr together with monoidal functors F : C → Cstr
and F ′ : Cstr → C such that we have natural monoidal isomorphisms FF ′ ∼=
idCstr and F ′F ∼= idC.

Proof. For more information and a proof of this important result consult
[Kas95, XI.5] or [ML98, XI.3].

Viewing equivalent categories as essentially the same we will use this
theorem to work with strict categories whenever we want to.

2 Cobordisms

Now that TQFTs and monoidal categories have been introduced in full gen-
erality this section devotes itself to one single but significant example of a
symmetric monoidal category, namely the category of n-dimensional cobor-
disms nCob. As mentioned in the introduction this category is the classical
domain category of a TQFT.

The objective of this section is as follows. After introducing cobordisms
and explaining the category nCob in the first two parts we will then limit
ourselves to 2Cob. It turns out that the 2-dimensional case can completely
be understood by providing a presentation of the category 2Cob. This will
be the key to understand the connection between 2d-TQFTs and Frobenius
algebras.

Since this thesis highlights algebraic aspects of TQFTs rather than dif-
ferential topology we will not prove everything in detail. The given sources
contain much further information. Our presentation of the material is ba-
sically a condensed version of [Koc04, pp.9-77]. Basic knowledge about
notions related to smooth manifolds will be assumed, see e.g. [Lee02].

2.1 Oriented cobordisms

Let M be a compact oriented n-manifold4 with boundary. In particular this
means that every point x ∈ M has an open neighborhood U ⊂ M which
is homeomorphic to an open subset of the half-space H := {(x1, ..., xn) ∈
Rn |xn ≥ 0}. The boundary ∂M is again an orientable manifold of dimen-
sion n− 1 where the orientation of ∂M is normally chosen to be induced by
the orientation of M .

Now focus on a connected component Σ of ∂M . We could also define an
orientation of the manifold Σ independently of the orientation of M . The
reason to consider this is that the boundary components can be characterized
as in- or out-boundary components by specifying another orientation at will.

4In this thesis all manifolds are supposed to be equipped with a smooth structure.
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Let x ∈ Σ be a point and v1,...,vn−1 be a positively oriented basis of TxΣ.
Since the tangent bundle TΣ can be thought of as a subbundle of TM |Σ
we can take a vector w ∈ TxM and ask whether the set v1,...,vn−1,w defines
a positively oriented basis of TxM . If this is the case we will refer to w as a
positive normal.

Recall from the definition of the tangent space that w is just an equiva-
lence class of curves passing through x ∈ M . In particular we could take a
chart φ around x and locally view a representing curve as a curve in Rn. Now
it is sensible to ask wether the tangent vector of this curve at φ(x) points into
the half-space. If this is the case we simply say that w is inward-pointing.

Definition 13. A connected component Σ ⊂ ∂M is called an in-boundary
component if for some x ∈ Σ a positive normal is inward-pointing. Otherwise
it is called an out-boundary component.

It can be checked that this is well-defined in the sense that the definition
is neither dependent on any particular choice of x ∈ Σ nor on the choice
of a positive normal. Therefore the boundary of a manifold M consists of
certain in- and out-boundary components.

Definition 14. Let Σ0 and Σ1 be closed oriented (n − 1)-manifolds. An
oriented cobordism M : Σ0 ⇒ Σ1 from Σ0 to Σ1 is a compact oriented n-
manifold M together with smooth maps Σ0 → M and Σ1 → M such that
Σ0 maps diffeomorphically, preserving orientation, onto the in-boundary of
M , and Σ1 maps diffeomorphically, preserving orientation, onto the out-
boundary of M .

Remark 15 (Cylinder construction). To illustrate this concept we discuss a
crucial construction which produces important examples of oriented cobor-
disms. Let Σ0 and Σ1 be two closed oriented (n − 1)-manifolds which are
diffeomorphic via an orientation-preserving diffeomorphism. We define an
oriented n-manifold by M := Σ1 × [0, 1] where [0, 1] is equipped with its
canonical orientation and so is M . Then M together with the smooth maps

Σ0
∼−→ Σ1

∼−→ Σ1 × {0} ↪→ Σ1 × [0, 1]

and
Σ1

∼−→ Σ1 × {1} ↪→ Σ1 × [0, 1]

constitutes a cobordism from Σ0 to Σ1 because Σ1 × {0} is the inboundary
of M and Σ1×{1} is the outboundary. Thus we have found a way to assign
a cobordism to a pair of manifolds that come together with an orientation
preserving diffeomorphism. This is called the cylinder construction.
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2.2 The category nCob

The next step would be to define a category whose objects are closed ori-
ented (n−1)-manifolds and whose morphisms are oriented cobordisms. For-
tunately it turns out that the natural way of doing this is impossible5. We
quickly demonstrate where the construction fails and see how the problem
is solved. Afterwards we are ready to define the right version of nCob.

In a category where oriented cobordisms are morphisms we might naively
define a composition as follows. Let Σ0, Σ1 and Σ2 be closed oriented (n−1)-
manifolds and let M0 : Σ0 ⇒ Σ1 as well as M1 : Σ1 ⇒ Σ2 be two oriented
cobordisms. We can then glue these manifolds along their common boundary
Σ1 as topological manifolds. The following theorem asserts that the glued
topological manifold M0M1 := M0 qΣ1 M1 can be equipped with a smooth
structure again.

Theorem 16. Given two cobordisms M0 : Σ0 ⇒ Σ1 and M1 : Σ1 ⇒ Σ2 there
exists a smooth structure on the topological manifold M0M1 = M0 qΣ M1

such that each inclusion map M0 ↪→ M0M1, M1 ↪→ M0M1 is a diffeomor-
phism onto its image. This smooth structure is unique up to a diffeomor-
phism leaving Σ0, Σ1 and Σ2 fixed.

Proof. The proof requires Morse theory. For details see [Mil65, cf. Thm.1.4].

The theorem suggests that we have to be careful. The problem is that
in general there is no canonical choice of a smooth structure on the glued
manifold. In other words the composition of oriented cobordisms described
above is not well-defined. Luckily this problem of uniqueness can be solved
by introducing an equivalence relation between oriented cobordisms.

Definition 17. Two cobordisms from Σ0 to Σ1 are equivalent if there ex-
ists an orientation-preserving diffeomorphism ψ : M → M ′ such that the
following diagram commutes

M ′

Σ0

==

!!

Σ1

aa

}}
M

OO

5This is not a typo. The fortunate part about this problem is that it quickly initiated
the search for an alternative way of defining a category of oriented cobordisms which at
first sight seems less intuitive (since it involves the introduction of an equivalence relation)
but on the other hand made the construction of manifold invariants possible in the first
place.
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Now the idea is to compose cobordism classes rather than cobordisms
themselves. Again let Σ0, Σ1 and Σ2 be closed oriented n−1-manifolds and
let M0 : Σ0 ⇒ Σ1 and M1 : Σ1 ⇒ Σ2 be representatives of the cobordism
classes [M0] and [M1] respectively. By Theorem 16 the manifold M0M1

represents a well-defined cobordism class. It can be checked that the class
[M0M1] only depends on the classes [M0] and [M1] and not on the choice of
representatives. Thus we have a well-defined notion of composing cobordism
classes which turns out to be associative because gluing of manifolds is
associative.

In order to define an identity cobordism class for a given Σ we come
back to the construction in Remark 15. There we saw that an orientation-
preserving diffeomorphism of (n − 1)-manifolds induces an oriented cobor-
dism between these manifolds. Choosing both Σ0 and Σ1 to be Σ and
the diffeomorphism to be the identity map we obtain an oriented cobordism
Σ⇒ Σ whose class serves as the identity cobordism. For a Morse-theoretical
proof see [Koc04, 1.3.16]. Thus we have a category.

Definition 18. By nCob we denote the category whose objects are closed
oriented (n − 1)-manifolds and whose morphisms are classes of oriented
cobordisms as described above.

The monoidal structure in this category is very similar to the one in
Braid (cf. Example 8). Given two closed oriented (n − 1)-manifolds their
tensor product is defined to be their disjoint union which is again a closed
oriented (n−1)-manifold. Analogously, the tensor product of two cobordism
classes is given by the class of the oriented cobordism obtained from taking
the disjoint union of a representing manifold from each class. The unit
object is given by the empty manifold.

To define a symmetric structure in this category we use the cylinder
construction again. For given (n − 1)-manifolds Σ0 and Σ1 with the usual
properties the twist isomorphism τΣ0,Σ1 : Σ0 q Σ1 ⇒ Σ1 q Σ0 is defined to
be the class of the cobordism induced by the canonical twist diffeomorphism
Σ0 q Σ1 → Σ1 q Σ0.

At this point it is a good place to quickly convince oneself that the
cylinder construction is not only a simple assignment but even a functor
from the category of closed oriented (n − 1)-manifolds with orientation-
preserving diffeomorphisms to the category nCob, see [Koc04, 1.3.22]. This
insight immediately implies that τΣ0,Σ1 is truly an isomorphism in nCob and
moreover that τΣ1,Σ0 ◦ τΣ0,Σ1 = idΣ0,Σ1 . The rest of the defining properties
of a symmetric structure (in particular the naturality of the isomorphisms)
can be deduced exploiting the fact that the twist diffeomorphism Σ0qΣ1 →
Σ1 qΣ0 turns the category of smooth manifolds into a symmetric monoidal
category. For now we will not bother with that in any detail because it
turns out that in the case of our main interest (n = 2) all these things will
be rather obvious.
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2.3 A presentation of 2Cob

Finally we want to focus on the category 2Cob since we get an explicit
description of this category in terms of generators and relations. As it turns
out this will be the key to translating all the topological data into algebra.

We begin by replacing the category 2Cob with a category which is equiv-
alent but somewhat simpler. This category will be a skeleton of 2Cob.

Lemma 19. For n ≥ 0 let n denote the disjoint union of n copies of the
circle S1 with some fixed orientation. By 0 we denote the empty 1-manifold
∅. Then the full subcategory consisting of objects {0,1,2, ...} is a skeleton
of 2Cob.

Proof. It is a well-known result that any closed 1-manifold is diffeomorphic
to a finite union of copies of S1, cf. [Mil97, Appendix]. In fact any closed
oriented 1-manifold is diffeomorphic via an orientation preserving diffeomor-
phism to a finite union of copies of S1 with fixed orientation. This follows
from the existence of an orientation preserving diffeomorphism between two
copies of S1 with reverse orientation.6 Thus it is enough to show that two
objects are isomorphic in 2Cob if and only if they are diffeomorphic as man-
ifolds via an orientation-preserving diffeomorphism. Such a diffeomorphism
induces an isomorphism in 2Cob because we have already noted above that
the cylinder construction is functorial. On the other hand the existence
of an isomorphism between two closed oriented 1-manifolds in 2Cob im-
plies that both manifolds share the same number of connected components,
see [Koc04, 1.3.30]. Then, by the argumentation above, there exists an
orientation-preserving diffeomorphism between these manifolds.

Notice that this skeleton is obviously closed under the operation of dis-
joint union and thus the monoidal structure carries over to this category.
From now on and throughout this thesis we will write 2Cob for the skeleton
of the original 2Cob.

The following result lays the foundation for our further discussion.

Theorem 20. Two connected, compact, oriented surfaces are diffeomorphic
if and only if they have the same genus and the same number of boundary
components.

Proof. [Hir76, Thm.3.11]

This theorem allows us to classify two-dimensional oriented cobordism
classes via the genus of a representing surface as long as we additionally keep

6This diffeomorphism can be constructed by placing the two circles side by side in a
plane, separated by a vertial line of equal distance from both circles. Then the two circles
can be thought of as mirror images of each other by reflection in the line. Mapping points
to their mirror images yields the desired diffeomorphism.
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track of which boundary components are in and which are out. In particular
a picture of a cobordism like this

uniquely describes a certain cobordism class because it contains all necessary
information about the genus as well as the in- and out-boundary components
(we follow the convention that these pictures are read from bottom to top
and all in-boundary components are drawn on the left). In this case the
picture describes the class of a cobordism 3 ⇒ 1 of genus 0. Even though
one might guess from the picture that the surface penetrates itself in the
middle this is not what is meant by this drawing. It rather symbolizes the
fact that our manifolds are not embedded in an ambient space and thus we
simply do not know which component lies above which. In fact the notion
of ”over” and ”under” does not even exist.

Theorem 21. Any cobordism class in the monoidal category 2Cob can be
obtained by either composing or paralleling (disjoint union) the classes of
the following six elementary cobordisms

Proof. We begin by looking at a cobordism class represented by a connected
surface. By the classification theorem of surfaces one can immediately write
down a canonical representative made up of the given basic cobordisms via
the following normal form

This normal form is made up of three parts. The first one being a cobordism
n ⇒ 1 encoding the data regarding the in-boundary. The second one con-
tains the topological data in form of the genus. The last part is a cobordism
1 ⇒ m describing the out-boundary part. If the in-part is a cobordism
0 ⇒ 1 the first elementary cobordism listed above is used to construct the
normal form. Similarly the fifth elementary cobordism is used if the out-part
is a cobordism 1⇒ 0.
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If the representing surface is not connected we have to be a bit careful
since disjoint union in the category of manifolds is not the same as disjoint
union in 2Cob simply because equivalent cobordisms have to respect a spe-
cific ordering of the in- and out-boundary components. So for disconnected
cobordisms we could use the normal form described above for each connected
component and afterwards permute the in- and out-boundary components
until they fit the cobordism class which we like to represent. Since any per-
mutation can be decomposed as a product of neighboring transpositions the
elementary twist suffices to do that.

Having found a set of generators for 2Cob we ask about relations. For
the sake of readability these relations are listed in Appendix B. The proof
of these relations is trivial having the classification result in mind. For each
relation simply notice that each of the surfaces involved has genus zero and
the same number of in- and out-boundary components which respect the
ordering. In particular the twist relations listed there show that 2Cob is a
symmetric monoidal category.

Finally we state that the relations listed in Appendix B are in fact suffi-
cient in the sense that every other relation that someone might write down
can be obtained by building it from the relations that are already listed. In
other words the relations are sufficient to transform any given decomposition
of a cobordism to normal form. We will not address this issue any further.
For details consult [Koc04, p.73-77].

3 Frobenius algebras

The following constitutes a core section of this thesis. The reason for this
establishes itself in the fact that 2d-TQFTs can be characterized by Frobe-
nius algebras (cf. Theorem 37). More specific a 2d-TQFT corresponds to a
commutative Frobenius algebra and vice versa.

In the first part we will introduce the notion of a Frobenius algebra and
give some important examples. Afterwards we want to show that under
certain assumptions a Frobenius algebra admits a unique coalgebra struc-
ture whose counit is the Frobenius form. Theorem 36 will make this useful
statement precise.

3.1 Definition of a Frobenius algebra

All of the basics on Frobenius algebras presented in the following are stan-
dard, see e.g. [Abr97] or [Koc04]. However, the formulations and proofs
given here may differ slightly since they have been adapted to the needs of
this thesis. For simplicity we will work with a strictified version of Vectk and
identify A⊗k = A = k⊗A as well as A⊗(A⊗A) = (A⊗A)⊗A = A⊗A⊗A
(cf. Section 1).
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Definition 22. Let A be a k-algebra7 with multiplication map µ and unit
η. An associative, non-degenerate pairing is a k-linear map β : A ⊗ A → k
such that

1. The diagram

A⊗A⊗A
µ⊗idA

xx

idA⊗µ

&&
A⊗A

β
&&

A⊗A

β
xx

k

is commutative.

2. There exists a k-linear map γ : k → A⊗A such that

A
γ⊗idA //

idA

##

A⊗A⊗A

idA⊗β

��
A

A⊗A⊗A

β⊗idA

��

A
idA⊗γoo

idA

{{
A

are commutative. The map γ is called a copairing.

Lemma 23. Let A be a finite-dimensional k-algebra. There is a bijection
between

1. k-linear maps ε : A→ k such that ε(µ(a⊗b)) = 0 for all a ∈ A implies
b = 0

2. associative, non-degenerate pairings β : A⊗A→ k.

A k-linear map ε : A → k with the properties described above is called a
Frobenius form.

7In this text we use a definition of a k-algebra which is common in the theory of
quantum groups. Please consult Appendix A for further information.
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Proof. Given a linear map ε : A → k with the property of the lemma we
define a pairing β as follows

β : A⊗A −→ k , a⊗ b 7−→ ε(µ(a⊗ b)).

Since µ is associative we have

µ ◦ µ⊗ idA = µ ◦ idA ⊗ µ.

Precomposing with ε gives the associativity of β = ε ◦ µ.
In order to see the non-degeneracy we will explicitly construct a copairing
γ. To do that consider the k-linear map

f : A→ A∗ , b 7→ ε(µ( ⊗ b))

from A to its vector space dual. Notice that f is injective: Let f(b) = 0 for
some b ∈ A. This means ε(µ( ⊗ b)) is the zero map. Explicitly we have
ε(µ(a ⊗ b)) = 0 for all a ∈ A. Hence by the properties of ε we get b = 0,
which shows injectivity.
In particular, if we choose a basis b1,...,bn of A, injectivity of f implies that
the linear forms ε(µ( ⊗bi)) constitute a basis of A∗. Now it is easy to verify
that the matrix (bij)ij with bij := β(bi ⊗ bj) is invertible.
Let (γij)ij be its inverse. Now define

γ : k → A⊗A , 1 7→
n∑

i,j=1

γij .bi ⊗ bj .

This satisfies the commutative diagrams expressing non-degeneracy. By
linearity it suffices to show this on a basis vector bk.

id⊗ β ◦ γ ⊗ id(bk) = id⊗ β(

n∑
i,j=1

γij .bi ⊗ bj ⊗ bk)

=

n∑
i,j=1

γijβjk.bi

=
n∑
i=1

(
n∑
j=1

γijβjk).bi

= bk

The last equation used the fact that
∑n

j=1 γijβjk = δik where δik denotes
the Kronecker delta. Analogously we compute

β ⊗ id ◦ id⊗ γ(bk) = bk.

Hence β is an associative, non-degenerate pairing.
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Vice versa suppose we are given an associative, non-degenerate pairing
β : A⊗A→ k. This defines a linear map by setting

ε : A→ k , a 7→ β(a⊗ η(1k)).

Fix b ∈ A and let ε(µ(a ⊗ b)) = 0 for all a ∈ A. By the associativity of β
and the properties of the unit we obtain

0 = β(µ(a⊗ b)⊗ η(1k)) = β(a⊗ µ(b⊗ η(1k))) = β(a⊗ b)

for all a ∈ A and thus

b = (id⊗ β ◦ γ ⊗ id)(b)

= (id⊗ β)(γ(1k)⊗ b)

= (id⊗ β)(

n∑
i,j=1

γij .bi ⊗ bj ⊗ b)

=

n∑
i,j=1

γij β(bj ⊗ b)︸ ︷︷ ︸
=0

.bi

= 0.

Finally, we convince ourselves that the assignments defined above are
in fact inverse to each other. If we start with a pairing β, go over to the
associated linear form ε given by a 7→ β(a⊗η(1k)) and then go back, we find
that the pairing obtained from this is given by a⊗ b 7→ β(µ(a⊗ b)⊗ η(1k)).
As calculated above we have

β(µ(a⊗ b)⊗ η(1k)) = β(a⊗ µ(b⊗ η(1k)) = β(a⊗ b).

Hence we see that our original β is recovered. The other direction simply
follows from

ε(µ(a⊗ η(1k))) = ε(a).

As a consequence of this proof we note the following result which turns
out to be needful later.

Corollary 24. Given an associative, non-degenerate pairing β : A⊗A→ k,
then the corresponding copairing γ : k → A⊗A is unique.

Proof. Let γ and γ̃ be two copairings defined by

γ(1k) =

n∑
i,j=1

γij .bi ⊗ bj
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and similarly

γ̃(1k) =
n∑

i,j=1

γ̃ij .bi ⊗ bj

where b1,...,bn is a basis of A. By the commutativity of the diagram express-
ing non-degeneracy we get

id⊗ β ◦ γ ⊗ id(bk) =
n∑
i=1

(
n∑
j=1

γijβjk).bi = bk

and

id⊗ β ◦ γ̃ ⊗ id(bk) =
n∑
i=1

(
n∑
j=1

γ̃ijβjk).bi = bk

as calculated in the proof of Lemma 23 above. These equations show that
both the matrix (γij) and (γ̃ij) are inverses of the matrix (βij) and thus they
are the same. Hence the two copairings agree.

Definition 25. A finite-dimensional k-algebra A together with a Frobenius
form is called Frobenius algebra. A is called commutative Frobenius algebra
if additionally the following diagram commutes

A⊗A τ //

µ
##

A⊗A

µ
{{

A

where τ : A⊗A→ A⊗A is given by the flip x⊗ y 7→ y ⊗ x.

Remark 26. Due to Lemma 23 we could equivalently define a Frobenius al-
gebra to be a finite-dimensional k-algebra equipped with an associative, non-
degenerate pairing because the bijection between such pairings and Frobe-
nius forms allows us to switch from one to the other whenever it seems con-
venient. If a Frobenius algebra is specified by an associative, non-degenerate
pairing we will refer to it as a Frobenius pairing.

In the following we want to study some examples of Frobenius algebras.
A long list of examples is provided by [Koc04, p.99 ff.]. The first two dis-
cussed below can be found there.

Example 27. Let k be a field. Then we can view k as an algebra over
itself. As a Frobenius form we simply take the identity. Since k has no zero
divisors this is a well-defined Frobenius form which turns k into a Frobenius
algebra.
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Example 28. Consider the group algebra C[G] = {
∑n

i=0 λixi |λi ∈ C} over
C of a finite group G = {x0, x1, ..., xn} of order n + 1. Let x0 = 1G denote
the neutral element in G. Then the group algebra C[G] becomes a Frobenius
algebra by defining the Frobenius form ε to be the linear extension of the
map G→ C given by

xi 7→
{

1, for i = 0
0, otherwise.

Now fix some h =
∑n

i=0 λixi ∈ C[G]. It remains to check that ε(g · h) = 0
for all g ∈ C[G] implies h = 0 (cf. Lemma 23). Under the assumption
that ε(g · (

∑n
i=0 λixi)) = 0 for all g ∈ C[G], we can choose g = xj for some

0 ≤ j ≤ n. Let xk denote the inverse of xj in G. Then we obtain

0 = ε(xj · (
n∑
i=0

λixi)) = ε(
n∑
i=0

λi(xjxi)) = λk.

Repeating this for all j yields
∑n

i=0 λixi = 0.

Example 29. The following example requires some fundamental theorems
from algebraic topology. All definitions and theorems used here can be
found in [Hat03, chapter 3]. The idea of the following example is sketched
by Abrams [Abr97, p.58-59]. However, he remains silent about many as-
pects, e.g. the problem of finite dimensionality, which is one of the defining
properties of a Frobenius algebra. Here we present a more detailed and
worked out version.

Let M be a smooth, compact, k-oriented n-manifold and k is some field
of characteristic zero. We would like to equip the (singular) cohomology
ring

H∗(M) :=
⊕
i≥0

H i(M ; k)

with coefficients in k with the structure of a Frobenius algebra.
The first thing to notice here is that H∗(M) is not only a ring but even

a k-algebra since all the the cohomology groups H i(M,k) are in fact vector
spaces. Furthermore H∗(M) is finite-dimensional. The crucial result to
see this is that a n-dimensional manifold has the homotopy type of a CW-
complex of dimension less than or equal to n [Hir76, Thm.4.3]. Cellular
cohomology shows that H i(M) = 0 for i > n. Moreover, the compactness
of M implies that M is indeed a finite CW-complex, that is M is made up
of only finitely many cells. Thus we conclude the finite-dimensionality of
H∗(M) =

⊕n
i=0H

i(M).
It remains to construct a Frobenius form. To do that consider the map

〈−,−〉 : H i(M)⊗Hi(M)→ k, [f ]⊗ [c] 7→ 〈[f ], [c]〉 := f(c).

It is easy to check that for each i this is a well-defined evaluation map and
does not depend on the choice of any representative. Using this we define a
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k-linear map
εn : Hn(M)→ k, [f ] 7→ 〈[f ], [M ]〉

where [M ] denotes the fundamental orientation class of M . For 0 ≤ i < n
we define

εi : H i(M)→ k

to be the zero map. By the universal property of the direct sum we obtain
a k-linear map

ε :
n⊕
i=0

H i(M ; k)→ k

which is given by 〈[f ], [M ]〉 for [f ] ∈ Hn(M) and zero otherwise. The claim
is that ε is a Frobenius form. Since the multiplication map µ : H∗(M) ⊗
H∗(M)→ H∗(M) is given by the cup-product

[f ]⊗ [g] 7→ [f ] ∪ [g]

we have to show that ε([f ] ∪ [g]) = 0 for all [f ] ∈ H∗(M) implies that [g]
must be zero.

To prove this we first introduce some useful isomorphisms.8 Since our
manifold is compact and k-orientable we have the Poincare duality isomor-
phism

H i(M)
∼−→ Hn−i(M), [f ] 7→ [f ] ∩ [M ]

where ∩ denotes the cap-product. Moreover, there is the canonical isomor-
phism from Hn−i(M) to its double dual Hom(Hom(Hn−i(M), k), k) which
is explicitly given by

[c] 7→ ((ϕ : Hn−i(M)→ k) 7→ ϕ([c])).

By the universal coefficient theorem we have an isomorphism

Hn−i(M)
∼−→ Hom(Hn−i(M), k), [f ] 7→ 〈[f ],−〉

since Extk(Hn−i−1(M), k) = 0, because k is a field. Applying the Hom-
functor yields an isomorphism

Hom(Hom(Hn−i(M), k), k)
∼−→ Hom(Hn−i(M), k)

which is simply precomposing with the universal coefficient theorem isomor-
phism.

To sum up, we have an isomorphism H i(M)
∼−→ Hom(Hn−i(M), k) by

the composition

H i(M)
∼−→ Hn−i(M)

∼−→ Hom(Hom(Hn−i(M), k), k)
∼−→ Hom(Hn−i(M), k)

8In this example we will use the shorthand notation Hom(V,W ) whenever we actually
mean Homk(V,W ), the space of all k-linear maps between some k-vector spaces V,W .
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which is explicitly given by

[f ] 7→ [f ] ∩ [M ] 7→ ((ϕ : Hn−i(M)→ k) 7→ ϕ([f ] ∩ [M ])) 7→ 〈−, [f ] ∩ [M ]〉.

After these preliminaries we can finally prove that the linear form ε is
indeed a Frobenius form. So let ε([f ] ∪ [g]) = 0 for all [f ] ∈ H∗(M) and
[g] ∈ H i(M) fixed. Obviously the interesting case is [f ] ∈ Hn−i(M) such
that [f ] ∪ [g] ∈ Hn(M). Then we have

0 = ε([f ] ∪ [g]) = 〈[f ] ∪ [g], [M ]〉
= (−1)(n−i)·i〈[f ], [g] ∩ [M ]〉

for all [f ] ∈ Hn−i(M). Thus 〈−, [g]∩[M ]〉 is the zero map. The isomorphism
H i(M)

∼−→ Hom(Hn−i(M), k) shows that [g] = 0 which is exactly what we
wanted.

3.2 Frobenius algebras and coalgebras

The aim of this section is to see that a Frobenius algebra carries a coalgebra
structure whose counit is the Frobenius form. This coalgebra structure turns
out to be unique if one requires the Frobenius relation to hold (cf. Theorem
36). To construct the comultiplication map δ a graphical calculus is provided
which replaces the work with commutative diagrams. This will already
anticipate our main classification theorem since our pictures will resemble
two-dimensional cobordisms. The idea of using this graphical calculus was
inspired by Kock’s book [Koc04, 2.3]. All of the results can be found in his
text. However, we managed to shorten his exposition. For example Kock
introduces a three-point function in order to define the comultiplication.
Despite the importance that this might have for field theory we decided to
take a shortcut since this function is not needed anywhere.

3.2.1 Graphical calculus

If we start with a Frobenius algebra A we are given maps µ, η, ε, β and
the flip τ . We will now represent each of these maps by a symbol as shown
below. Since the identity map idA occurs in the diagrams expressing the
properties of these maps as well, we will adopt a symbol for it, too.

µ η ε β idA τ

Remark 30. The idea behind these symbols is the following: We count the
tensor powers occuring in the source of each map and draw a circle for each
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power on the left side of our picture. Similarly we draw a circle for each
tensor power in the target on the right side of the picture and join these
circles by something which resembles a surface. Note that whenever the
ground field k appears in our maps we interpret this as the zeroth tensor
power of A. Hence, according to our principles, we do not draw a circle for
it. Moreover, these pictures are supposed to be read from bottom to top.
In other words the first algebra occuring in a tensor power is represented by
the lowest circle.

Since each of the symbols described above actually stands for a map, it
is natural that we want to have something which respresents composition
and tensoring of maps graphically. Thus we introduce the following set of
rules for this graphical calculus

1. Taking a tensor product of two maps is graphically represented by
simply putting the symbol representing the second map in the tensor
product on top of the first one.

2. Composition of maps is symbolized by joining the circles in the picture
of the first map on the right side with the circles in the picture on the
left side of the second map.

In order to familiarize ourselves with this graphical calculus we will ex-
press the commutative diagrams in the definition of a k-algebra (cf. Ap-
pendix A) in terms of the pictures. We will need this later anyway.

Associativity (of µ) Unit Axioms

In order to get a full graphical description of a Frobenius algebra we also
have to express the conditions imposed on the Frobenius form in terms of
our pictures. Obviously this is hardly possible because here we resort to
dealing with elements explicitly which our calculus is not capable of. So we
would rather like to work with a Frobenius pairing. Then Definition 22 gives
the following pictures

Associativity (of β) Non-degeneracy / Snake relation
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where the turned pairing obviously stands for the copairing.
Recall from the proof of Lemma 23 that there is a direct connection

between ε and β. In particular we got equalities ε◦µ = β, µ◦η⊗ id = ε and
µ ◦ id ⊗ η = ε. Since this will be important later we write these relations
graphically, too.

3.2.2 Construction of a comultiplication

The aim of this section is to construct a comultiplication map on a Frobenius
algebra to get a coalgebra structure. Since we already have a map ε : A→ k,
namely the Frobenius form, we construct the comultiplication in such a way
that the Frobenius form will become the counit.

Definition 31. We define a map δ : A→ A⊗A by the following picture:

Remark 32. We quickly convince ourselves that the second equality in
Definition 31 holds
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Note that this is not just an array of fancy pictures but a serious math-
ematical proof since we could easily translate the pictures into the language
of ordinary maps and commutative diagrams. The important steps in the
proof were to use the snake relation in the first line, then the associativity
of the pairing (line skip from line two to line three) and again the snake re-
lation in line four. Other than that we simply inserted some identities here
and there which is obviously harmless. Hence, from now on we completely
omit identities in our pictures for the sake of brevity.

To see a first proof with omitted identities which is very similar to the
detailed proof given above we note the following proposition.

Proposition 33. The following relations hold:

Proof. We will show the right equality. The left one works analogously.

The first equality is just the definition of δ, the second one is the associativity
of β and the last one is the snake relation.

Lemma 34. The comultiplication δ defined pictorially above is coassocia-
tive. In pictures
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Proof. Consider the pictures

The outer equalities are simply the definition of δ and in the middle we use
the associativity of µ.

Lemma 35. The Frobenius form ε is the counit for δ

Proof. We only show the left part.

The first equality is the connection between β and ε, the second equality is
Proposition 33, and the last one is the unit axiom for a k-algebra.

Theorem 36. Let A be a Frobenius Algebra with Frobenius form ε. Then
there exists a unique comulitplication whose counit is ε and which satisfies
the following relation:

This is called the Frobenius relation.

Proof. In Definition 31 such a comultiplication has been constructed. Lemma
34 establishes its coassociativity and Lemma 35 shows that ε is its counit.
To see that the Frobenius relation holds consider the following pictures
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The outer equalities follow from the definition of the comultiplication and in
the middle we used the associativity of µ. This shows the left-hand equation
of the Frobenius relation. The other one follows analogously.

What remains to be shown is the uniqueness. Since we require the co-
multiplication to satisfy the Frobenius relation we have

where the dashed symbol stands for an arbitrary comultiplication δ̃ with the
desired properties. From this we obtain

and analogously

by the unit and counit axioms. Hence we have shown that δ̃◦η is a copairing
for β since it satisfies the snake relation. By Corollary 24 the copairing is
unique and thus we have γ = δ̃ ◦ η. This yields

which shows that δ = δ̃ since the left side is just the definition of δ (cf.
Definiton 31).

4 Algebraic classification of TQFTs

In this section two different types of TQFTs F : C →Vectk are studied by
specifying a certain monoidal category C.

First we look at 2d-TQFTs F :2Cob→Vectk in the sense of Atiyah.
If F is not only monoidal but also respects the symmetric structure of the
two categories involved, such TQFTs correspond to commutative Frobenius
algebras. This is the first main result of this thesis. It will allow us to use
examples of commutative Frobenius algebras to construct explicit examples
of 2d-TQFTs. Moreover, we will see the connection between TQFTs and
manifold invariants in the subsequent section.
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The second kind of TQFT which is examined afterwards will be certain
monoidal functors F : C → Vectk called fiber functors where the domain
category will be a finite k-linear abelian monoidal category. The main result
in this context will be the correspondence of these functors to bialgebras (cf.
Theorem 43).

Finally, an attempt is made to contrast the two results. Throughout this
section we will work with strictified categories only.

4.1 2d-TQFTs and Frobenius algebras

After the thorough discussion of Frobenius algebras and the category 2Cob
we are ready to prove the following main result straightaway.

Theorem 37. There is a bijection between

1. strict monoidal functors F : 2Cob→ Vectk which are symmetric, i.e.
F (τn,m) = τF (n),F (m) for all objects n,m ∈ 2Cob

2. commutative Frobenius algebras.

Proof. Given a commutative Frobenius algebra A a functor F : 2Cob →
Vectk can be defined by setting F (1) := A. Strict monoidality then implies

F (n) = A⊗ ...⊗A︸ ︷︷ ︸
n times

.

Thus F is completely determined on objects as soon as F (1) is specified.
Recall that Theorem 21 says that any cobordism can be built from the

six elementary cobordisms by composition or paralleling. Thus by using
functoriality and monoidality again it suffices to specify F for these elemen-
tary cobordisms. By Theorem 36 A has a unique structure of a coalgebra
such that the Frobenius form is the counit and the Frobenius relation is
satisfied. So we define F on morphisms by the following table

Morphism in 2Cob Morphism in Vectk
id : A→ A

τ : A⊗A→ A⊗A

µ : A⊗A→ A

η : k → A

δ : A→ A⊗A
ε : A→ k
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This yields a well-defined symmetric monoidal functor since the relations
in 2Cob correspond precisely to the axioms of a commutative Frobenius
algebra (cf. Appendix B).9

Given a symmetric monoidal functor F : 2Cob → Vectk we can look
at A := F (1) which is by definition a finite-dimensional vector space. The
idea is to show that A is in fact a Frobenius algebra.

In this case we can use the table above to define maps µ, δ, η and ε as
images of the respective cobordism classes.

Notice that µ and η defined in this way satisfy the associativity and unit
axiom condition of a k-algebra simply because these relations are true in
2Cob (cf. Appendix B) and are preserved by the monoidal functor. Since
we have

in 2Cob and F is symmetric this relation passes over to µ ◦ τ = µ by
applying F . Thus A is a commutative algebra.

For A to be a commutative Frobenius algebra it remains to construct
an associative, non-degenerate pairing. This is done by setting β := ε ◦ µ.
Clearly β is associative because µ is associative. To see the non-degeneracy
we define a copairing γ := δ ◦ η. First observe that the Frobenius relation
in 2Cob gives µ ⊗ id ◦ id ⊗ δ = δ ◦ µ by applying F . Moreover we get
ε⊗ id ◦ δ = id since we have

in 2Cob. We can now use these two equalitites to see

β ⊗ id ◦ id⊗ γ = ε⊗ id ◦ µ⊗ id ◦ id⊗ δ︸ ︷︷ ︸
=δ⊗µ

◦id⊗ η = ε⊗ id ◦ δ︸ ︷︷ ︸
=id

◦µ ◦ id⊗ η︸ ︷︷ ︸
=id

= id

where we also used the unit axiom established above for the last equality.
Thus we have established the first diagram expressing non-degeneracy. The
other one follows analogously. So A is indeed a Frobenius algebra.

The two mappings described above are obviously inverse to each other.

4.2 Examples and manifold invariants

In the following two concrete and typical examples of 2d-TQFTs are dis-
cussed by specifying a Frobenius algebra. As an application we will look at
manifold invariants which the TQFT produces and seize the opportunity of

9We have not proven all the equalities listed in Appendix B for Frobenius algebras.
Fortunately all the ones left out are straightforward, except for the cocommutativity,
where we refer to [Abr97, Thm.2.1.3] or [Koc04, 2.3.29].
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doing some explicit calculations. This section was inspired by some of the
exercises in [Koc04, pp.176-177].

Example 38 (Nilpotent TQFT). Recall from Example 29 that cohomology
rings give rise to Frobenius algebras. To be concrete consider the cohomology
ring of CP 1 which is C[X]/(X2). This is a C-algebra with basis 1̄, X̄. The
multiplication map µ is then given by

1̄⊗ 1̄ 7→ 1̄
X̄ ⊗ 1̄ 7→ X̄
1̄⊗ X̄ 7→ X̄
X̄ ⊗ X̄ 7→ 0̄

and the unit η is simply
1 7→ 1̄.

In addition to that we have a Frobenius form ε : C[X]/(X2) → C defined
by

1̄ 7→ 0
X̄ 7→ 1.

Using the identity β = ε◦µ we immediately calculate that the corresponding
pairing β is

1̄⊗ 1̄ 7→ 1̄ 7→ 0
X̄ ⊗ 1̄ 7→ X̄ 7→ 1
1̄⊗ X̄ 7→ X̄ 7→ 1
X̄ ⊗ X̄ 7→ 1̄ 7→ 0.

Since it will be important let us calculate the corresponding copairing γ.
From the proof of Lemma 23 we know that we can put the images of the
basis vectors under β into a matrix as follows(

β11 β12

β21 β22

)
=

(
β(1̄⊗ 1̄) β(1̄⊗ X̄)
β(X̄ ⊗ 1̄) β(X̄ ⊗ X̄)

)
=

(
0 1
1 0

)
and invert this matrix to get(

γ11 γ12

γ21 γ22

)
=

(
β11 β12

β21 β22

)−1

=

(
0 1
1 0

)−1

=

(
0 1
1 0

)
where the γij are the coefficients of the expansion of the image vector γ(1)
in the canonical basis. Hence the copairing γ is given by

1 7→ X̄ ⊗ 1̄ + 1̄⊗ X̄.

Last but not least the comuliplication δ can be calculated by looking at
id⊗ µ ◦ γ ⊗ id (cf. Definition 31). So we get
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1̄ 7→ X̄ ⊗ 1̄ + 1̄⊗ X̄
X̄ 7→ X̄ ⊗ X̄.

By the proof of Theorem 37 the commutative Frobenius Algebra C[X]/(X2)
defines a 2d-TQFT. Since C[X]/(X2) is nilpotent the TQFT corresponding
to this Frobenius algebra is called nilpotent.

As an application we want to look at manifold invariants produced by
this TQFT. So let M be a closed, oriented 2-manifold. The crucial point is
that M can always be interpreted as an oriented cobordism ∅ ⇒ ∅. Thus
M determines a certain cobordism class and therefore an arrow in 2Cob.
So the TQFT assigns a k-linear map k → k to the cobordism class of the
manifold M which we simply interpret as an element of k via the canonical
identification k ∼= End(k). In particular diffeomorphic manifolds are sent to
the same element. Hence we have constructed a diffeomorphism invariant.
As an example consider a manifold of genus 2

Its cobordism class can be built from the classes of the basic cobordisms of
Theorem 21.

The corresponding linear map k → k under the TQFT is ε ◦ µ ◦ δ ◦ µ ◦ δ ◦ η.
We observe that µ ◦ δ ◦ µ ◦ δ = 0 by checking that µ ◦ δ(X̄) = 0 and

µ ◦ δ ◦ µ ◦ δ(1̄) = µ ◦ δ(X̄ + X̄) = 0

on the basis 1̄, X̄ of A. Thus the assigned map k → k is the zero map.
In particular, one can already see that all manifolds of higher genus will
have invariant 0. As a conclusion we see that this TQFT produces stupid
invariants. This might be a motivation to look at yet another example.

Example 39 (Semi-simple TQFT). Take the group Z/2Z and consider its
group algebra C[Z/2Z] over C. We already know that this is an example
of a Frobenius algebra. Notice that we have an isomorphism of algebras
C[Z/2Z]

∼−→ C[X]/(X2 − 1) by sending the canonical basis to the canonical
basis. In order to tie in with the notation used in the first example we
will describe everything in terms of the algebra C[X]/(X2 − 1). By similar
calculations as in the example above we obtain the following table
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µ : A⊗A→ A

1̄⊗ 1̄ 7→ 1̄
X̄ ⊗ 1̄ 7→ X̄
1̄⊗ X̄ 7→ X̄
X̄ ⊗ X̄ 7→ 1̄

η : k → A 1 7→ 1̄

ε : A→ k
1̄ 7→ 1
X̄ 7→ 0

β : A⊗A→ k

1̄⊗ 1̄ 7→ 1
X̄ ⊗ 1̄ 7→ 0
1̄⊗ X̄ 7→ 0
X̄ ⊗ X̄ 7→ 1

γ : k → A⊗A 1 7→ 1̄⊗ 1̄ + X̄ ⊗ X̄

δ : A→ A⊗A 1̄ 7→ 1̄⊗ 1̄ + X̄ ⊗ X̄
X̄ 7→ 1̄⊗ X̄ + X̄ ⊗ 1̄

Again by Theorem 37 this defines a 2d-TQFT. By Maschke’s Theorem
C[X]/(X2− 1) is semi-simple. This holds in general for any Frobenius alge-
bra over C obtained from the group algebra of a finite group. That is why
the TQFTs obtained from these Frobenius algebras are called semi-simple.

We now want to show that this TQFT can distinguish 2-manifolds of
different genus and therefore provides a sensible invariant. For notational
convenience we introduce the handle operator h := µ◦δ : A→ A. By looking
at the table above we see that h(1̄) = 1̄ + 1̄ = 2̄. Induction then yields

hk(1̄) = (h ◦ ... ◦ h)︸ ︷︷ ︸
k times

(1̄) = h(hk−1(1̄)) = h(1̄ + ...+ 1̄︸ ︷︷ ︸
2k−1 times

) = 1̄ + ...+ 1̄︸ ︷︷ ︸
2k times

= 2̄k.

Now consider a two-dimensional manifold of genus k. We cut this manifold
as suggested by the following picture

Going over to diffeomorphism classes and applying the TQFT functor we
get the linear map

ε ◦ µ ◦ δ ◦ ... ◦ µ ◦ δ ◦ η = ε ◦ hk ◦ η

which gives the invariant

ε(hk(η(1)︸︷︷︸
=1̄

)) = ε(1̄ + ...+ 1̄︸ ︷︷ ︸
2k times

) = 2k.

If we cut the sphere as follows
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we get the invariant
(ε ◦ η)(1) = 1.

All in all we have seen that this TQFT assigns the invariant 2k to a 2-
manifold of genus k. This seems like a very strong result. However, we
should not be too excited about it because the existence of the classification
theorem (cf. Theorem 20), which is always in the background, made the con-
struction of this invariant possible in the first place. So in fact we have not
gained anything. Nonetheless we can already see that higher-dimensional
TQFTs might be promising theories to classify higher-dimensional manifolds
where such complete classification results do not exist.

4.3 TQFTs and bialgebras

In this section we replace the category 2Cob and study monoidal func-
tors/TQFTs whose domain category is a finite k-linear abelian monoidal
category. Instead of defining all these words, we will use a characterization
of these categories which says that a finite k-linear abelian monoidal cate-
gory is equivalent to a category A−mod of finite-dimensional modules over
a finite-dimensional k-algebra A, see [EGNO, p.40] and [Fre64, Chapter 7]
for more on this. For a definition which does not use this equivalence and
instead explains each word independently, see [CE08].10 In the following C
always stands for a finite k-linear abelian monoidal category. The following
is a worked out version of [EGNO, pp.40-43].

Lemma 40. Let F : C → Vectk be a functor. Then the collection End(F )
of all natural transformations µ : F → F can be equipped with the structure
of a k-algebra.

Proof. Let η and µ denote natural transformations from F to itself. Then
the sum η + µ is given by (η + µ)X := ηX + µX where ηX + µX denotes the
morphism F (X)→ F (X) defined by v 7→ ηX(v) +µX(v). Notice that η+µ
is indeed a well-defined natural transformation since for every morphism
f : X → Y in C we have

F (f)((η + µ)X(v)) = F (f)(ηX(v) + µX(v))

= F (f)(ηX(v)) + F (f)(µX(v))

= ηY (F (f)(v)) + µY (F (f)(v))

= (η + µ)Y (F (f)(v)).

Analogously we define (λη)X := ληX with ληX : F (X) → F (X), v 7→
ληX(v) and (η · µ)X := ηX ◦ µX and check that we get natural transforma-
tions. Since the endomorphisms of a vector space constitute an algebra it

10This might in fact be a better approach because the category A−mod corresponding
to a finite k-linear abelian monoidal category is not unique. It is unique only up to the
Morita equivalence class of A.
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is clear that these operations turn End(F ) into a k-algebra where the zero
element is given by the transformation consisting of zero maps only and the
unit element is given by the transformation consisting of identities in each
component.

Given a functor F : C → Vectk we can define a functor F ⊗F : C ×C →
Vectk by (F ⊗ F )(X,Y ) := F (X) ⊗ F (Y ) by using the tensor product
in Vectk. Now it makes sense to consider the algebra End(F ⊗ F ). This
algebra is easy to understand in terms of the algebra End(F ) since we have
the following result

Lemma 41. There is an isomorphism of k-algebras αF : End(F )⊗End(F )→
End(F ⊗ F ) given by

αF (η ⊗ µ)X,Y := ηX ⊗ µY

where η, µ ∈ End(F ).

Proof. The first observation is that αF is a well-defined homomorphism of
k-algebras. Consider the map α̃F : End(F )× End(F )→ End(F ⊗ F ) given
by

α̃F (η, µ)X,Y := ηX ⊗ µY .

This is a k-bilinear map. For the first component the equation α̃F (η+η̃, µ) =
α̃F (η, µ) + α̃F (η̃, µ) follows from

α̃F (η + η̃, µ)X,Y = (η + η̃)X ⊗ µY
= (ηX + η̃X)⊗ µY
= ηX ⊗ µY + η̃X ⊗ µY
= α̃F (η, µ)X,Y + α̃F (η̃, µ)X,Y

= (α̃F (η, µ) + α̃F (η̃, µ))X,Y .

To see that α̃F (λ.η, µ) = λ.α̃F (η, µ) we calculate

α̃F (λ.η, µ)X,Y = (λ.η)X ⊗ µY
= (λ.ηX)⊗ µY
= λ.(ηX ⊗ µY )

= λ.α̃F (η, µ)X,Y .

Similar calculations can be done for the other component. Thus we see
that α̃F induces the k-linear map αF by the universal property of the tensor
product. In addition to that we have αF (η⊗µ · η̃⊗µ̃) = αF (η⊗µ) ·αF (η̃⊗µ̃)
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because

αF (η ⊗ µ · η̃ ⊗ µ̃)X,Y = αF (η · η̃ ◦ µ · µ̃)X,Y

= (η · η̃)X ⊗ (µ · µ̃)Y

= (ηX ◦ η̃X)⊗ (µY ◦ µ̃Y )

= (ηX ⊗ µY ) ◦ (η̃X ⊗ µ̃Y )

= αF (η ⊗ µ)X,Y ◦ αF (η̃ ⊗ µ̃)X,Y .

All in all we have shown that αF is a k-algebra homomorphism which is
obviously unital.

It remains to make sure that αF is a bijection. It suffices to show that

End(F (X))⊗ End(F (Y ))→ End(F (X)⊗ F (Y ))

given by

(f : F (X)→ F (X))⊗(g : F (Y )→ F (Y )) 7→ (f⊗g : F (X)⊗F (Y )→ F (X)⊗F (Y ))

is a bijection for any particular choice of X,Y ∈ C. Then we see that the
homomorphism αF : End(F )⊗ End(F )→ End(F ⊗ F ) given by

αF (η ⊗ µ)(X,Y ) := ηX ⊗ µY

is bijective as well, simply by applying the bijection above in each compo-
nent. The proof of this bijection is standard, see e.g. [Kas95, Thm.II2.1].

From now on let F : C → Vectk be an exact and faithful monoidal
functor such that φ : F (1)

∼−→ k is the identity (cf. Definition 10). Such a
functor is called a fiber functor.

Theorem 42. Let F : C → Vectk be a fiber functor. Then the k-algebra
End(F ) can be equipped with a comultiplication δ and a counit ε which turn
End(F ) into a bialgebra.11

Proof. In order to avoid confusion with the multiplication and unit in an
algebra we will denote natural transformations in End(F ) by small Roman
letters. Now define δ : End(F )→ End(F )⊗ End(F ) to be

δ(a) := α−1
F (δ̃(a))

where δ̃(a) ∈ End(F ⊗ F ) is given by

δ̃(a)X,Y := J−1
X,Y aX⊗Y JX,Y .

11Even though the functor is monoidal we do not require the transformations in End(F )
to be natural monoidal transformations.
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This is a k-linear map because α−1
F is k-linear and the linearity of δ̃ is clear.

To see the coassociativity of this comultiplication consider the following
diagram

End(F )⊗ End(F )
δ̃⊗id //

αF

��

End(F ⊗ F )⊗ End(F )

αF

��

End(F )⊗ End(F )⊗ End(F )
αF⊗idoo

id⊗αF

��
End(F ⊗ F )

δ̃1 // End(F ⊗ F ⊗ F ) End(F )⊗ End(F ⊗ F )
αFoo

End(F )

δ̃

OO

δ̃

// End(F ⊗ F )

δ̃2

OO

End(F )⊗ End(F )

id⊗δ̃

OO

αF

oo

where δ̃1 applies δ̃ to the first factor and leaves the second one unchanged
and similarly for δ̃2. Notice that by the definition of δ the commutativity
of the outer square is equivalent to the coassociativity. Thus it suffices to
show the commutativity of the four small squares. The only square which is
interesting is in fact the one down left. Checking the commutativity of the
other ones is elementary.

So take a ∈ End(F ). Since δ̃(a)X,Y = J−1
X,Y aX⊗Y JX,Y we have

δ̃1(δ̃(a))X,Y,Z = J−1
X,Y ⊗ idF (Z) ◦ J−1

X⊗Y,ZaX⊗Y⊗ZJX⊗Y,Z ◦ JX,Y ⊗ idF (Z)

for chosen objects X,Y, Z by the definition of δ̃1. Similarly we have

δ̃2(δ̃(a))X,Y,Z = idF (X) ⊗ J−1
Y,Z ◦ J

−1
X,Y⊗ZaX⊗Y⊗ZJX,Y⊗Z ◦ idF (X) ⊗ JY,Z .

But these maps are equal since we have

JX⊗Y,Z ◦ JX,Y ⊗ idF (Z) = JX,Y⊗Z ◦ idF (X) ⊗ JY,Z

by the monoidal structure axiom (notice that the associativity constraints
are gone since our categories are strict).

Now define a counit ε : End(F ) → k by setting ε(a) := a1. To actually
obtain an element in k we identify a1 with a1(1). Consider the diagram

End(F )

id
��

End(F )⊗ End(F )

αF

��

ε⊗idoo

End(F ) End(F ⊗ F )
βoo

End(F )

id

hh

δ̃

OO
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with β : End(F ⊗ F )→ End(F ) given by

β(η)X : F (X) = F (1)⊗ F (X)
η1,X−−−→ F (1)⊗ F (X) = F (X)

where the equalities are the strictified unit constraints (remember that
F (1) = k). If this diagram commutes we obtain that ε is a left counit.
So let us investigate the small diagrams starting with the upper square.

Let a ⊗ b ∈ End(F ) ⊗ End(F ). Then we have ε ⊗ id(a ⊗ b) = a1(1).b ∈
End(F ) on the one side. Chasing through the square via β ◦ αF we obtain

β(αF (a⊗ b))X : F (X) = F (1)⊗ F (X)
a1⊗bX−−−−→ F (1)⊗ F (X) = F (X),

thus explicitly on elements

β(αF (a⊗ b))X(v) = a1(1).bX(v)

which is exactly the transformation a1(1).b. For the triangle notice that for
a ∈ End(F ) we have

β(δ̃(a))X : F (X) = F (1)⊗ F (X)
J−1
1,Xa1,XJ1,X−−−−−−−−−→ F (1)⊗ F (X) = F (X)

which collapses to F (1) ⊗ F (X)
a1,X−−−→ F (1) ⊗ F (X) since J1,X = id by

the second diagram in Definition 10. Finally, a1,X is identified with aX by
strictness. The proof that ε is also a right unit is analogous.
Furthermore δ is an algebra homomorphism. We have

δ̃(a)X,Y δ̃(b)X,Y = J−1
X,Y aX,Y bX,Y JX,Y = J−1

X,Y (ab)X,Y JX,Y = δ̃(ab)X,Y

by the definition of δ̃ and the definition of the multiplication in End(F ⊗F ).
Hence we get

δ(a)δ(b) = α−1
F (δ̃(a))α−1

F (δ̃(b)) = α−1
F (δ̃(a)δ̃(b)) = α−1

F (δ̃(ab)) = δ(ab)

because αF is an isomorphism of algebras. It is obvious that δ is unital.
Moreover, ε is clearly a unital algebra homomorphism. All in all we have
proven that End(F ) has the structure of a bialgebra.

Theorem 43. There is a bijection between

1. finite k-linear abelian monoidal categories C together with a fiber func-
tor F : C → Vectk (up to monoidal equivalence and isomorphism of
monoidal functors)

2. finite-dimensional bialgebras H over k (up to isomorphism).
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Proof. The bijection goes as follows: Given a fiber functor F : C → Vectk we
assign to it the bialgebra End(F ) of functorial endomorphisms constructed
in Theorem 42. On the other hand, given a finite-dimensional bialgebra H
we can consider the category Rep(H) of finite-dimensional modules over H
discussed in Example 5. This is a k-linear abelian monoidal category. The
functor F : Rep(H)→ Vectk is defined to be the forgetful functor which is
obviously a fiber functor.

We quickly sketch why these assignments are mutually inverse. Let us
start with a finite k-linear abelian monoidal category together with a fiber
functor F : C → Vectk. Since F is by definition exact and faithful it is
a well-known result that there exists a unique (up to unique isomorphism)
projective generator12 P of C such that F = FP where FP : C → Vectk
denotes the functor given by FP (X) = Hom(P,X). By the characterization
of finite k-linear abelian monoidal categories as finite-dimensional module-
categories (see p.35 and the references given there), one obtains that C is
monoidally equivalent to the category of End(P )op-modules. But from the
above we see that this is nothing but End(FP )-modules. Thus we obtain
that C is in fact monoidally equivalent to the category Rep(End(F )) of
End(F )-modules. Moreover, composing this equivalence with the forgetful
functor equals F .

Starting with a bialgebra H it needs to be verified that H ∼= End(F ) as
bialgebras where F : Rep(H) → Vectk denotes the forgetful functor. It is
straightforward from Example 5 and the proof of Theorem 42 that the map
H → End(F ) sending h to the transformation ηh given by

(ηh)(V,φ) := φ(h) ∈ Endk(V ),

where (V, φ) denotes some representation, is an isomorphism of bialgebras.

4.4 Comparison of the main results

After having established Theorem 37 and Theorem 43 it is natural to ask
whether these results are mathematically connected on a deeper level in
addition to the similarity regarding their formulation, i.e. both describe
a bijection between some kind of a TQFT and a distinguished algebraic
structure. A first attempt to connect these results could be undertaken by
understanding the connection between bialgebras and Frobenius algebras.
By Theorem 36 we know that a Frobenius algebra has a unique structure
of a coalgebra such that the Frobenius form is the counit. Thus one might
be tempted to hope that Frobenius algebras turn out to be bialgebras via

12The condition that we have enough projectives and only a finite number of isomor-
phism classes of simple objects is part of the definition of being a finite category (see
[EGNO, 1.18.2]). Take a projective cover of a simple object from each isomorphism class.
Then their direct sum constitutes a projective generator of C.
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this construction. This is wrong because in general there is no reason why
the Frobenius form and the comultiplication should be homomorphisms of
algebras. Vice versa in most cases bialgebras are not Frobenius algebras.
These thoughts are made precise by the following theorem.

Theorem 44. Let A together with maps η, µ, δ and ε (as in Theorem 36)
be a Frobenius algebra. The data (A;µ, η, δ, ε) defines a bialgebra if and only
if A is isomorphic (as Frobenius algebra)13 to the trivial Frobenius algebra
k with Frobenius form ε′ = id (cf. Example 27).

Proof. Let A together with η, µ, δ and ε be a bialgebra. Since by defi-
nition the counit (which is also the Frobenius form) ε is required to be a
homomorphism of algebras it is in particular a homomorphism of rings. So
ker(ε) ⊂ A is an ideal. Let b ∈ ker(ε). For an arbitrary a ∈ A this implies
µ(a ⊗ b) ∈ ker(ε) and therefore ε(µ(a ⊗ b)) = 0. Since a was chosen to
be arbitrary we have b = 0 since ε is a Frobenius form. Thus ker(ε) = 0
and hence A ∼= A/ ker(ε) ∼= k as k-algebras by the homomorphism theorem
because ε is surjective (ε(1) = 1 and ε is k-linear).

Notice that the constructed isomorphism A
∼−→ k is given by ε itself. In

particular it is an isomorphism of Frobenius algebras from A with ε to k
with Frobenius form id.

On the other hand if we begin with the trivial Frobenius algebra k with
Frobenius form id we calculate that δ : k → k⊗ k is given by 1 7→ 1⊗ 1 (cf.
Section 4.2 for examples of such calculations). Now it is easy to see that ε
and δ are in fact homomorphisms of k-algebras. Thus we have a bialgebra
whose counit is the Frobenius form.

Moreover, if we start with a Frobenius algebra A with Frobenius form ε
which is isomorphic to k together with id it follows from the compatibility
condition of the Frobenius forms that ε = f where f denotes the isomor-
phism of k-algebras between A and k. Thus it suffices to check that also the
comultiplication δ associated with A is a homomorphism of algebras. Since
ε is the counit of δ in A we have ε⊗ id ◦ δ = id by the counit axiom. Thus
we obtain

δ = f−1 ⊗ id ◦ f ⊗ id ◦ δ︸ ︷︷ ︸
=ε⊗id◦δ=id

= f−1 ⊗ id ◦ id.

So we see that δ is an algebra homomorphism as a combination of the
homomorphisms f−1 and id.

By this theorem bialgebras and Frobenius algebras are connected only
by the trivial example. Thus it seems that Theorem 37 and Theorem 43
are rather different since the obvious connection via the respective algebraic

13An isomorphism f : A → A′ of Frobenius algebras is an isomorphism of k-algebras
which is compatible with the Frobenius forms, i.e. ε′ ◦ f = ε where ε is the form of A and
ε′ is the form of A′.
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structures fails. It requires further investigation to see whether Theorem 37
could possibly be related in an interesting way to an existing reconstruction
theorem of Hopf algebras similar to Theorem 43, see [EGNO, Thm.1.22.11].
The hope to see some interesting connection in this case are based on a
theorem asserting that finite-dimensional Hopf algebras can be equipped
with the structure of a Frobenius algebra. To see this, one studies the so-
called space of integrals for a given Hopf algebra by making extensive use of
the theory of rational modules. A detailed discussion of a proof would go
beyond the scope of this thesis. Instead we refer to [Swe69, Chapter V] for
a thorough treatment.
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A Algebras, coalgebras and bialgebras

Definition 45. A k-algebra is a k-vector space A together with two k-linear
maps

µ : A⊗A→ A η : k → A

such that the following diagrams commute

A⊗A⊗A
µ⊗idA

xx

idA⊗µ

&&
A⊗A

µ
&&

A⊗A

µ
xx

A

k ⊗A η⊗idA//

%%

A⊗A
µ

��

A⊗ kidA⊗ηoo

yy
A

The map µ is called multiplication and η is called unit. The diagram on the
left expresses the associativity of µ and the diagram on the right is referred
to as unit axiom.

Remark 46. Usually a k-algebra is defined to be a k-vector space together
with a bilinear multiplication map · : A×A→ A. Note that by the universal
property of the tensor product we have a bijection

{k-bilinear maps · : A×A→ A} 1:1−−→ {k-linear maps µ : A⊗A→ A}.

This allows us to switch between both possible definitions whenever it seems
convenient.

Definition 47. A coalgebra over k is a k-vector space A together with two
k-linear maps

δ : A→ A⊗A ε : A→ k

such that the following diagrams commute

A⊗A⊗A

A⊗A

δ⊗idA
88

A⊗A

idA⊗δ
ff

A
δ

ff

δ

88

k ⊗A A⊗Aε⊗idAoo idA⊗ε // A⊗ k

A

δ

OO 99ee
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The map δ is called comultiplication and ε is called counit. The diagram
on the left expresses the coassociativity of δ and the diagram on the right is
referred to as counit axiom.

Definition 48. A bialgebra over k is a k-algebra which is also a coalgebra
over k and the maps δ and ε are morphisms of algebras, i.e. we have

µ′ ◦ δ ⊗ δ = δ ◦ µ and δ ◦ η = η′

as well as
µ′′ ◦ ε⊗ ε = ε ◦ µ and ε ◦ η = η′′,

where µ′ and η′ denote the multiplication and counit in A⊗A, and µ′′ and
η′′ denote the multiplication and counit in k.

B Relations in 2Cob

Identity relations

Sewing in discs

Associativity and coassociativity

Commutativity and cocommutativity

Frobenius relation
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Twist relations
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